Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(7): e18168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494848

RESUMEN

Hepatocellular carcinoma (HCC) is the prevailing subtype of hepatocellular malignancy. While previous investigations have evidenced a robust link with programmed cell death (PCD) and tumorigenesis, a comprehensive inquiry targeting the relationship between multiple PCDs and HCC remains scant. Our aim was to develop a predictive model for different PCD patterns in order to investigate their impact on survival rates, prognosis and drug response rates in HCC patients. We performed functional annotation and pathway analysis on identified PCD-related genes (PCDRGs) using multiple bioinformatics tools. The prognostic value of these PCDRGs was verified through a dataset obtained from GEO. Consensus clustering analysis was utilized to elucidate the correlation between diverse PCD clusters and pertinent clinical characteristics. To comprehensively uncover the distinct PCD regulatory patterns, our analysis integrated gene expression profiling, immune cell infiltration and enrichment analysis. To predict survival differences in HCC patients, we established a PCD model. To enhance the clinical applicability for the model, we developed a highly accurate nomogram. To address the treatment of HCC, we identified several promising chemotherapeutic agents and novel targeted drugs. These drugs may be effective in treating HCC and could improve patient outcomes. To develop a cell death feature for HCC patients, we conducted an analysis of 12 different PCD mechanisms using eligible data obtained from public databases. Through this analysis, we were able to identify 1254 PCDRGs likely to contribute to cell death on HCC. Further analysis of 1254 PCDRGs identified 37 genes with prognostic value in HCC patients. These genes were then categorized into two PCD clusters A and B. The categorization was based on the expression patterns of the genes in the different clusters. Patients in PCD cluster B had better survival probabilities. This suggests that PCD mechanisms, as represented by the genes in cluster B, may have a protective effect against HCC progression. Furthermore, the expression of PCDRGs was significantly higher in PCD cluster A, indicating that this cluster may be more closely associated with PCD mechanisms. Furthermore, our observations indicate that patients exhibiting elevated tumour mutation burden (TMB) are at an augmented risk of mortality, in comparison to those displaying low TMB and low-risk statuses, who are more likely to experience prolonged survival. In addition, we have investigated the potential distinctions in the susceptibility of diverse risk cohorts towards emerging targeted therapies, designed for the treatment of HCC. Moreover, our investigation has shown that AZD2014, SB505124, LJI308 and OSI-207 show a greater efficacy in patients in the low-risk category. Conversely, for the high-risk group patients, PD173074, ZM447439 and CZC24832 exhibit a stronger response. Our findings suggest that the identification of risk groups and personalized treatment selection could lead to better clinical outcomes for patients with HCC. Furthermore, significant heterogeneity in clinical response to ICI therapy was observed among HCC patients with varying PCD expression patterns. This novel discovery underscores the prospective usefulness of these expression patterns as prognostic indicators for HCC patients and may aid in tailoring targeted treatment for those of distinct risk strata. Our investigation introduces a novel prognostic model for HCC that integrates diverse PCD expression patterns. This innovative model provides a novel approach for forecasting prognosis and assessing drug sensitivity in HCC patients, driving a more personalized and efficacious treatment paradigm, elevating clinical outcomes. Nonetheless, additional research endeavours are required to confirm the model's precision and assess its potential to inform clinical decision-making for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Estudios Prospectivos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Muerte Celular , Apoptosis/genética , Microambiente Tumoral
2.
Environ Toxicol ; 39(2): 915-926, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37966033

RESUMEN

The incidence rate of melanoma varies across regions, with Europe, the United States, and Australia having 10-25, 20-30, and 50-60 cases per 1 00 000 people. In China, patients with melanoma exhibit different clinical manifestations, pathogenesis, and outcomes. Current treatments include surgery, adjuvant therapy, and immune checkpoint inhibitors. Nonetheless, complications may arise during treatment. Melanoma development is heavily reliant on cell adhesion molecules (CAMs), and studying these molecules could provide new research directions for metastasis and progression. CAMs include the integrin, immunoglobulin, selectin, and cadherin families, and they affect multiple processes, such as maintenance, morphogenesis, and migration of adherens junction. In this study, a cell adhesion-related risk prognostic signature was constructed using bioinformatics methods, and survival analysis was performed. Plakophilin 1 (PKP1) was observed to be crucial to the immune microenvironment and has significant effects on melanoma cell proliferation, migration, invasion, and the cell cycle. This signature demonstrates high reliability and has potential for clinical applications.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Adhesión Celular , Placofilinas/metabolismo , Reproducibilidad de los Resultados , Cadherinas/metabolismo , Moléculas de Adhesión Celular , Microambiente Tumoral
3.
J Gene Med ; 26(1): e3600, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37776237

RESUMEN

BACKGROUND: The role of genes associated with the cuproptosis cell signaling pathway in prognosis and immunotherapy in ovarian cancer (OC) has been extensively investigated. In this study, we aimed to explore these mechanisms and establish a prognostic model for patients with OC using bioinformatics techniques. METHODS: We obtained the single cell sequencing data of ovarian cancer from the Gene Expression Omnibus (GEO) database and preprocessed the data. We analyzed a variety of factors including cuproptosis cell signal score, transcription factors, tumorigenesis and progression signals, gene set variation analysis (GSVA) and intercellular communication. Differential gene analysis was performed between groups with high and low cuproptosis cell signal scores, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Using bulk RNA sequencing data from The Cancer Genome Atlas, we used the least absolute shrinkage and selection operator (LASSO)-Cox algorithm to develop cuproptosis cell signaling pathword-related gene signatures and validated them with GEO ovarian cancer datasets. In addition, we analyzed the inherent rules of the genes involved in building the model using a variety of bioinformatics methods, including immune-related analyses and single nucleotide polymorphisms. Molecular docking is used to screen potential therapeutic drugs. To confirm the analysis results, we performed various wet experiments such as western blot, cell counting kit 8 (CCK8) and clonogenesis tests to verify the role of the Von Willebrand Factor (VWF) gene in two ovarian cancer cell lines. RESULTS: Based on single-cell data analysis, we found that endothelial cells and fibroblasts showed active substance synthesis and signaling pathway activation in OC, which further promoted immune cell suppression, cancer cell proliferation and metastasis. Ovarian cancer has a high tendency to metastasize, and cancer cells cooperate with other cells to promote disease progression. We developed a signature consisting of eight cuproptosis-related genes (CRGs) (MAGEF1, DNPH1, RARRES1, NBL1, IFI27, VWF, OLFML3 and IGFBP4) that predicted overall survival in patients with ovarian cancer. The validity of this model is verified in an external GEO validation set. We observed active infiltrating states of immune cells in both the high- and low-risk groups, although the specific cells, genes and pathways of activation differed. Gene mutation analysis revealed that TP53 is the most frequently mutated gene in ovarian cancer. We also predict small molecule drugs associated with CRGs and identify several potential candidates. VWF was identified as an oncogene in ovarian cancer, and the protein was expressed at significantly higher levels in tumor samples than in normal samples. The high-score model of the cuproptosis cell signaling pathway was associated with the sensitivity of OC patients to immunotherapy. CONCLUSIONS: Our study provides greater insight into the mechanisms of action of genes associated with the cuproptosis cell signaling pathway in ovarian cancer, highlighting potential targets for future therapeutic interventions.


Asunto(s)
Células Endoteliales , Neoplasias Ováricas , Humanos , Femenino , Simulación del Acoplamiento Molecular , Factor de von Willebrand , Inmunoterapia , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Apoptosis , Proteínas de la Membrana , Glicoproteínas , Péptidos y Proteínas de Señalización Intercelular
4.
J Gene Med ; 26(1): e3602, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37813677

RESUMEN

BACKGROUND: The eighth-leading cause of cancer-related mortality and the seventh-most prevalent malignancy in women globally is ovarian cancer (OV). However, 5-year survival expectancy after conventional treatment is not good. Therefore, there is an urgent need for novel signatures to guide the designation of therapeutic schemes for OV patients. METHODS: We used univariate Cox analysis to screen hormone secretion regulation axis-related microRNAs (miRNAs), least absolute shrinkage and selection operator analysis to select candidate miRNAs and multivariate Cox analysis to build the risk model. To evaluate possible route and functional differences, enrichment analysis using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on the differentially expressed genes (DEGs) across various risk groups. We compared Tumor Immune Dysfunction and Exclusion (TIDE) scores across risk categories by analyzing immune cell infiltration, immune checkpoint gene expression, immunological function and TIDE scores. In the end, we determined the half maximal inhibitory concentration (IC50 ) of chemotherapy and targeted medicines for individual patients. Cell assays were determined to test the migration of the miRNA-target genes and western blotting was used to test the correlation of the miRNA-target genes and the pathways. RESULTS: We finally identified hormone secretion regulation axis-related 13 microRNAs to build a risk model. The validation of observed and anticipated values revealed a fair level of agreement. To evaluate the molecular pathways between various groups in accordance with the GO and KEGG analyses, we then discovered 173 DEGs between distinct risk groups. The risk score was shown to be inversely related to the number of immune cells, including myeloid dendritic, granulocytes, M1 and M2 macrophages, B cells, t-lymphocytes, and CD4+ and CD8+ cells, suggesting that immune cells are more frequent in the low-risk group. Immune cell infiltration investigation yielded these results. Finally, we recognized 11 chemotherapeutic drugs and 30 novels targeted drugs on the basis of IC50 between the different risk groups. GJB5 was determined to be the mir-219 target gene and was identified as promoting the cell cycle process. In addition, hormone secretion regulation axis related miRNAs were reported to affects the heterogeneity of endocrine microenvironment and anti-tumor immune pattern. CONCLUSIONS: In conclusion, a 13-miRNA prognostic model was constructed to know the immune status, prognosis, immunotherapeutic response and anti-tumor drug sensitivity for OV, which provides theoretical guidance for the effective and individualized treatment of OV patients.


Asunto(s)
Carcinoma , MicroARNs , Neoplasias Ováricas , Humanos , Femenino , MicroARNs/genética , Neoplasias Ováricas/genética , Carcinoma Epitelial de Ovario , Hormonas , Microambiente Tumoral/genética
5.
J Gene Med ; 26(1): e3605, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932968

RESUMEN

BACKGROUND: Peroxisome proliferator activating receptors (PPARs) are important regulators of nuclear hormone receptor function, and they play a key role in biological processes such as lipid metabolism, inflammation and cell proliferation. However, their role in head and neck squamous cell carcinoma (HNSC) is unclear. METHODS: We used multiple datasets, including TCGA-HNSC, GSE41613, GSE139324, PRJEB23709 and IMVigor, to perform a comprehensive analysis of PPAR-related genes in HNSC. Single-cell sequencing data were preprocessed using Seurat packets, and intercellular communication was analyzed using CellChat packets. Functional enrichment analysis of PPAR-related genes was performed using ClusterProfile and GSEA. Prognostic models were constructed using LASSO and Cox regression models, and immunohistochemical analyses were performed using human protein mapping (The Human Protein Atlas). RESULTS: Our single-cell RNA sequencing analysis revealed distinct cell populations in HNSC, with T cells having the most significant transcriptome differences between tumors and normal tissues. The PPAR features were higher in most cell types in tumor tissues compared with normal tissues. We identified 17 PPAR-associated differentially expressed genes between tumors and normal tissues. A prognostic model based on seven PPAR-associated genes was constructed with high accuracy in predicting 1, 2 and 3 year survival in patients with HNSC. In addition, patients with a low risk score had a higher immune score and a higher proportion of T cells, CD8+ T cells and cytotoxic lymphocytes. They also showed higher immune checkpoint gene expression, suggesting that they might benefit from immunotherapy. PPAR-related genes were found to be closely related to energy metabolism. CONCLUSIONS: Our study provides a comprehensive understanding of the role of PPAR related genes in HNSC. The identified PPAR features and constructed prognostic models may serve as potential biomarkers for HNSC prognosis and treatment response. In addition, our study found that PPAR-related genes can differentiate energy metabolism and distinguish energy metabolic heterogeneity in HNSC, providing new insights into the molecular mechanisms of HNSC progression and therapeutic response.


Asunto(s)
Neoplasias de Cabeza y Cuello , Receptores Activados del Proliferador del Peroxisoma , Humanos , Receptores Activados del Proliferador del Peroxisoma/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Metabolismo Energético/genética , Fenotipo , Neoplasias de Cabeza y Cuello/genética
6.
Environ Toxicol ; 39(3): 1847-1857, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38133212

RESUMEN

INTRODUCTION: Lung adenocarcinoma (LUAD) is a major health concern worldwide. Single-cell RNA-sequencing (scRNA-seq) provides a valuable platform for exploring the intratumoral heterogeneity in LUAD and holds great potential for facilitating the development and application of personalized therapeutic approaches. METHODS: The TCGA-LUAD (n = 503), GSE68465 (n = 442), GSE72094 (n = 398), and GSE26939 (n = 115) datasets were retrieved for prognostic assessment. Subgroup analysis was performed for the epithelial cells, endothelial cells, immune cells, and fibroblasts, and the transcription factors and tumor-related pathways enriched in each subgroup were analyzed using PROGENy and DoRothEA package. The InferCNV software was used to calculate the copy number variations (CNVs) in tumor cell subgroups with normal epithelial cells as the reference. The association between the annotated cell types and survival was analyzed using the Scissor software. RESULTS: We identified eight major cell types in LUAD, namely epithelial cells, NK cells, T and B cells, endothelial cells, mast cells, myeloid cells, and fibroblasts, of which the epithelial cells and B cells showed a marked increase in the tumor samples. In addition, we also detected an intense signal transduction network from the cancer-associated fibroblasts (CAFs) to malignant cells, mainly involving the DCN/MET, COLA1/DDR1, COL1A1/SDC1, and COL1A2/SDC1 pathways. The tumor differentiation trajectory consisted of state 1 and state 2, which were enriched in HIF1A, and state 4. Furthermore, only a few B cells originated from the normal tissue, suggesting significant recruitment and infiltration of B cells in LUAD. Based on differentially upregulated genes in the cells positively and negatively associated with survival, we established a prognostic model that showed satisfactory predictive performance in three different cohorts. States 3 and 2 of epithelial cells included the majority of cells with KRAS mutation, whereas state 2 showed high frequency of EGFR mutations. CONCLUSION: We analyzed intra-tumor heterogeneity of LUAD at the single-cell level and developed a prognostic index that was highly effective across multiple cohorts.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Análisis de Expresión Génica de una Sola Célula , Células Endoteliales , Variaciones en el Número de Copia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...